Hyperthermophile Protein Behavior: Partially-Structured Conformations of Pyrococcus furiosus Rubredoxin Monomers Generated through Forced Cold-Denaturation and Refolding

نویسندگان

  • Sanjeev Kumar Chandrayan
  • Satya Prakash
  • Shubbir Ahmed
  • Purnananda Guptasarma
چکیده

Some years ago, we showed that thermo-chemically denatured, partially-unfolded forms of Pyrococcus furiosus triosephosphateisomerase (PfuTIM) display cold-denaturation upon cooling, and heat-renaturation upon reheating, in proportion with the extent of initial partial unfolding achieved. This was the first time that cold-denaturation was demonstrated for a hyperthermophile protein, following unlocking of surface salt bridges. Here, we describe the behavior of another hyperthermophile protein, the small, monomeric, 53 residues-long rubredoxin from Pyrococcus furiosus (PfRd), which is one of the most thermostable proteins known to man. Like PfuTIM, PfRd too displays cold-denaturation after initial thermo-chemical perturbation, however, with two differences: (i) PfRd requires considerably higher temperatures as well as higher concentrations of guanidium hydrochloride (Gdm.HCl) than PfuTIM; (ii) PfRd's cold-denaturation behavior during cooling after thermo-chemical perturbation is incompletely reversible, unlike PfuTIM's, which was clearly reversible (from each different conformation generated). Differential cold-denaturation treatments allow PfRd to access multiple partially-unfolded states, each of which is clearly highly kinetically-stable. We refer to these as 'Trishanku' unfolding intermediates (or TUIs). Fascinatingly, refolding of TUIs through removal of Gdm.HCl generates multiple partially-refolded, monomeric, kinetically-trapped, non-native 'Trishanku' refolding intermediates (or TRIs), which differ from each other and from native PfRd and TUIs, in structural content and susceptibility to proteolysis. We find that the occurrence of cold denaturation and observations of TUI and TRI states is contingent on the oxidation status of iron, with redox agents managing to modulate the molecule's behavior upon gaining access to PfRd's iron atom. Mass spectrometric examination provides no evidence of the formation of disulfide bonds, but other experiments suggest that the oxidation status of iron (and its extent of burial) together determine whether or not PfRd shows cold denaturation, and also whether redox agents are able to modulate its behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus.

Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stabili...

متن کامل

Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature.

Rubredoxin from the hyperthermophile Pyrococcus furiosus is the most thermostable protein characterized to date with an estimated global unfolding rate of 10(-6) s(-1) at 100 degrees C. In marked contrast to these slow global dynamics, hydrogen exchange experiments here demonstrate that conformational opening for solvent access occurs in the approximately millisecond time frame or faster at 28 ...

متن کامل

Response of rubredoxin from Pyrococcus furiosus to environmental changes: implications for the origin of hyperthermostability.

The bases of the hyperthermostability of rubredoxin from Pyrococcus furiosus (RdPf) have been probed by structural perturbations induced by solution pH and ionic strength changes. Comparison of the solution behavior at pH 7 and pH 2, as probed by far- and near-UV circular dichroism, Trp fluorescence emission, 1-anilinonaphthalene-8-sulfonate (ANS) binding, and NMR spectroscopy, reveals the pres...

متن کامل

Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin.

In recent years, increased interest in the origin of protein thermal stability has gained attention both for its possible role in understanding the forces governing the folding of a protein and for the design of new highly stable engineered biocatalysts. To study the origin of thermostability, we have performed molecular dynamics simulations of two rubredoxins, from the mesophile Clostridium pa...

متن کامل

Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein.

The three-dimensional X-ray structures of the oxidized and reduced forms of rubredoxin from Pyrococcus furiosus, determined at -161 degrees C, and the NMR structure of the zinc-substituted protein, determined in solution at 45 degrees C, are compared. The NMR and X-ray structures, which were determined independently, are very similar and lead to similar conclusions regarding the interactions th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014